
170 Int. J. Computing Science and Mathematics, Vol. 16, No. 2, 2022

Nonparametric approximation of the
characteristics of the D/G/1 queue with finite
capacity

Faïrouz Afroun*
Laboratory of Pure and Applied Mathematics,
University of Tizi-Ouzou,
15000, Algeria
Email: afrounfairouz@gmail.com
*Corresponding author

Djamil Aïssani

Research Unit LaMOS (Modeling and Optimization of Systems),
University of Bejaia,
06000, Algeria
Fax: +213-34-21-51-88
Email: lamos_bejaia@hotmail.com

Djamel Hamadouche

Laboratory of Pure and Applied Mathematics,
University of Tizi-Ouzou,
15000, Algeria
Email: djhamad@yahoo.fr

Abstract: In this work, we consider the finite capacity of theD/G/1 queue. First,
the modelling of the system in question by an embedded Discrete-Time Markov
chain is considered. Secondly, the aim is to illustrate the use of the discrete kernel
method for the estimation of the stationary characteristics of this chain, when
the general distribution that governs it is an unknown function. To support and
illustrate our proposals, two extensive simulation studies are carried out.

Keywords: deterministic queues; Markov chains; smoothing parameter; discrete
kernels; errors; simulation.

Reference to this paper should be made as follows: Afroun, F., Aïssani, D. and
Hamadouche, D. (2022) ‘Nonparametric approximation of the characteristics
of the D/G/1 queue with finite capacity’, Int. J. Computing Science and
Mathematics, Vol. 16, No. 2, pp.170–180.

Biographical notes: Faïrouz Afroun is a doctoral student at the Department of
Mathematics at the University of Tizi-Ouzou, Algeria. She received a Master’s
degree in Applied Mathematics from the University of Bejaia, Algeria. She is a
permanent researcher at the Laboratory of Pure and Applied Mathematics (LPAM)

Copyright © 2022 Inderscience Enterprises Ltd.



Nonparametric approximation of the characteristics of the D/G/1 queue 171

at the University of Tizi-Ouzou. Her areas of research include Markov chains and
their estimation using the parametric or nonparametric methods, queueing theory,
stochastic modelling and statistics.

Djamil Aïssani is a Full Professor of Mathematics at the Department of Operations
Research at the University of Bejaia, Algeria. He started his career at the
University of Constantine in 1978. He received his PhD in 1983 from Kiev State
University (Soviet Union). He is at the University of Bejaia since its opening in
1983/1984. He is the Director of Research, Head of the Faculty of Science and
Engineering (1999 to 2000), Director of the Research Unit LaMOS, and Scientific
Head of the Computer Science Doctorate School ReSyD (2003 to 2011), and he
has taught in many universities (USTHB Algiers, Annaba, Rouen, Dijon, ENITA,
EHESS Paris, CNAM Paris, etc.). He has published many papers on Markov
chains, queueing systems, reliability theory, performance evaluation and their
applications in electrical, telecommunication networks and computer systems.

Djamel Hamadouche is a Professor of Mathematics at the Department of
Mathematics of the University of Tizi-Ouzou, Algeria. He started his career at
the University of Algiers in 1987. He received his PhD in 1997 at University of
Lille, France. He is at the University of Tizi-Ouzou since 1999. He is Director
of Research, Member of the scientific council of the Faculty of Sciences since
2001, Director of the Research Laboratory of Mathematics (2007–2016). His
research interests include Probability theory, Statistics, Markov chains and their
applications, queueing theory and stochastic modelling.

1 Introduction

In practice, the deterministic notion in queuing models is not always used in the absolute
sense, but it can also refer to the process where their random fluctuations (the variance)
are low, i.e., refer to the process nearly deterministic. That is why, for instance, in the
performance evaluation of modern telecommunication systems, the deterministic notion is
often used. Indeed, to express the low fluctuations of the inter-arrival times, deterministic
inter-arrival times queueing models are frequently applied for systems modelling in this
field (Alfa, 2010; Roberts et al., 1996; Ott, 1987).

Theoretically, the evaluating of the performances of a queueing system is based on
the different starting parameters describing it. However, in practice, the values of these
parameters are known only in the form of a sample of data. In this sense, to evaluate
the performances of a considered system, the use of statistical estimation techniques, that
aim to provide an approximation for the (unknown) parameters values by exploiting the
information provided by the sample, is inevitable.

In this paper, we propose to consider the D/G/1/C queue modelled by an embedded
Discrete-Time Markov Chain (DTMC) under the assumption that the distribution of a
number of customers served between two consecutive arrivals is an unknown mass function.
In addition, our goal is to estimate the transition matrix P associated to the D/G/1/C
queue using the kernel method. This choice is motivated by the fact that the transition
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matrix allows us to deduct all performance measures (transient and stationary) of the model
(Graham, 2014; Norris, 1997; Privault, 2018).

Historically, Roussas (1969) was the first to consider the kernel method in the estimation
of Markov chains. Thereafter, several other authors have completed his results, but these
results are restricted in a theoretical framework rather than a practical one. The use of
the kernel method in the estimation of a transition matrix in a practical framework was
considered by Gontijo et al. (2011). Recently, Cherfaoui et al. (2015a) addressed the problem
of choosing the smoothing parameter in the context of the kernel estimation of the transition
matrix. In this last work, in order to take into account the interaction of the different
components of the GI/M/1/N system, the authors proposed procedures for selecting the
smoothing parameter, which are based on matrix norms. Moreover, they showed that the
estimator of the chosen smoothing parameter, by minimising the matrix norm ∥.∥2, gives
better results than the classical methods.

It should be noted that the works (Gontijo et al., 2011; Cherfaoui et al., 2015a) were
carried out via continuous asymmetric kernel estimators (to estimate the distribution of
the data defined on R+). However, in practice, several situations are modelled by Markov
chains governing according to unknown discrete distributions. In this case, it is natural to
estimate these unknown distributions using discrete kernels.

To estimate a discrete density function using the kernel method, the Dirac kernel
estimator is often used by practitioners because of its simplicity and good asymptotic
properties. However, this estimator is not suitable for small or medium sized samples.
Besides the Dirac estimator, Aitchison and Aitken (1976) proposed another discrete kernel.
The problem of this last kernel is that is only suitable for categorical data and finite discrete
distributions. Recently, other discrete kernels have been proposed in Kokonendji et al.
(2007); Kokonendji and Kiessé (2011) to estimate density functions with discrete support.
The authors introduced the notion and the definition of a discrete kernel designed from
a discrete probability distribution. This latest allowed a considerable development of the
kernel method in the discrete case (see for instance the works (Djerroud et al., 2020; Belaid
et al., 2018; Wansouwé et al., 2016; Somé and Kokonendji, 2016; Zougab et al., 2014)).

The objective of our work is to verify the validity of the conclusions reached in Cherfaoui
et al. (2015a) on the Continuous-Time Markov Chain when we consider a DTMC. More
precisely, we analyse the problem of the smoothing parameter choice via the minimisation
of the matrix norms when we consider the discrete kernel estimator of the transition matrix
describing the D/G/1/C queue. To do this, we have developed explicit forms of the
expressions, outcome from the three matrix norms ∥.∥1, ∥.∥2 and ∥.∥∞, to minimise in
order to select the smoothing parameter when estimating the matrix P . Besides, to support
and illustrate our proposals two extensive simulations studies are carried out.

The remainder of this paper is organised as follows: In Section 2, we briefly introduce
the stochastic model of D/G/1/C queue. The problem of the kernel and the smoothing
parameter choice in the estimation of the matrix P is detailed in Section 3. Before
concluding, in Section 4, the simulation studies are carried out to show the main results of
this paper.

2 Model description

Let us consider a D/G/1/C queue where C (C > 1) is the capacity of the system
including the one who is in service. We assume that the service time distribution S(t) is a
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general distribution with rate µ and the inter-arrival time distribution A(t) is a deterministic
distribution function with mean λ−1 (A(t) = 1{t=λ−1},with 1{.} is the indicator function).
We assume also that the inter-arrival process and the service process are independent.

Consider the process {L(t), t ≥ 0}, where L(t) represents the number of customers
in the system at time t. Obviously, {L(t), t ≥ 0} is not a Markov process. For this, we
consider the embedded Markov chain defined at the new arrival epochs. Let tn = nλ−1 be
a sequence representing the instants of customer arrivals and Nn = N(tn) the number of
customers in the system at time tn, then the state of the system at time tn+1 is given by:

Nn+1 = min {Nn + 1, C} −Xn, (1)

whereXn ≡ Xn(λ
−1) represents the number of customers served between two consecutive

arrivals. Note that the random variable Nn+1 depends only on Nn and Xn. In added, the
random variables {Xn, n ∈ N}, which are i.i.d of common law:

ax = f(x) = Pr(Xn = x), x = 0, 1, 2, 3, ... (2)

with mean ρ−1 = µλ−1, are independent of n and the state of the system before tn.
Therefore, the process {Nn, n ∈ N} is a homogeneous DTMC with the state space E =
{0, 1, ..., C} and the transition matrix, P , whose forme is as follow:

P =



a0 a1 · · · aC−2 aC−1 bC
a0 a1 · · · aC−2 aC−1 bC
0 a0 · · · aC−3 aC−2 bC−1

...
. . . . . .

...

0 · · · 0 a0 · · · ai−1 ai bi+1

...
. . . . . .

...

0 · · · 0 a0 a1 b2
0 · · · 0 0 a0 b1


;

where ax is defined by (2) and by =
∑

y≥x ax.
Moreover, the fact that the stochastic matrixP is ergodic then, the stationary distribution

π = (π0, π1, ..., πC) exists and it is the solution of the system πP = π with
∑C

i=0 πi = 1.

3 Kernel estimation of transition matrix associated with the model

Let consider a D/G/1/C queue described by a DTMC (see Section 2) and assume that the
distribution of the number of the departures during two consecutive arrivals is an unknown
function. That is to say, we only have a piece of partial information, on the distribution of
the number of customers served between two consecutive arrivals, which is given in form
of a sample of observations x1, x2, ..., xn. In addition, our interest is the estimation of its
transition matrix P using the kernel density estimator defined by:

f̂(x) =
1

n

n∑
i=1

Kx,h(Xi), x ∈ N;
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where h ≡ h(n) is the smoothing parameter and Kx,h is the discrete kernel of target x and
the smoothing parameter h on the support ℵx,h = ℵx (does not depend on h).

It is clear that the implementation of this technique requires to fixing beforehand the
couple (K,h). For the choice of K, the problem is a priori easy. Indeed, the fact that x ∈ N
andK has only a little influence on the quality of the estimator then it sufficient to use one of
the following discrete kernels: Poisson kernel, Binomial kernel, Negative Binomial kernel,
Triangular kernel, and Dirac kernel (Kokonendji et al., 2007; Kokonendji and Kiessé, 2011).
For the choice of the smoothing parameter h, we propose to use two approaches, namely:
the classical techniques and the matrix norms.

3.1 Choice of smoothing parameter via classical techniques

Let X1, . . . , Xn be an n-sample (i.i.d.) from the unknown distribution f . The idea, in this
case, is to estimate the elements f(x) from the sample without taking into account their
repetition in the matrix P , that is to say it is enough to substitute f(x) by its kernel estimator

f̂(x) = P̂ r(X = x) =
1

n

n∑
i=1

Kx,h∗(Xi), x ∈ N,

where h∗ is the optimal smoothing parameter selected by the classical procedures and
subsequently replace the elements f(x) by their estimate f̂(x) in the matrix P to get P̂ .
Below are the most classical methods used for choosing the smoothing parameter in the
estimation of discrete density, in the case of a single sample.

1. Minimisation of the ISE: An appropriate choice for the smoothing parameter can be that
minimising the integrated squared error (ISE), which is given by:

h∗
ise = argmin

h

[∑
x∈N

(f̂(x)− f(x))2

]
= argmin

h
ISE(X1, ..., Xn, n, h,K, f). (3)

This technique has been detailed in Kokonendji et al. (2007); Kokonendji and Kiessé (2011).

2. Cross-validation: Another type of smoothing parameter selection techniques is those
based on the cross-validation method, detailed initially by Scott and Terrell (1987), such
as: Cross-validation by the least squares (UCV and BCV (Wansouwé et al., 2016)) and
maximum likelihood cross validation (LCV ). Recall that, the principle of these techniques
is to estimate the density f at point Xi, using the Leave-one-out cross-validation.

3.2 The choice of smoothing parameter by matrix norms

In this case, the idea is to take into account the number of repetitions of f̂(x) in the matrix
P̂ . To do this, we propose to use the matrix norms that allow us to include the repetitions
of the quantities f̂(x) in P̂ . Hence, the optimal smoothing parameter can be calculated
according to one of the following expressions that outcome, respectively, from the matrix
norms ∥.∥1, ∥.∥2 and ∥.∥∞:

h∗
1 = argmin

h

[
max
1≤i≤C

(
C−i∑
x=0

∣∣∣f̂(x)− f(x)
∣∣∣+ ∣∣∣∣∣ ∑

x>C−i

(
f̂(x)− f(x)

)∣∣∣∣∣
)]

. (4)
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h∗
2 = argmin

h

C−1∑
x=0

(C − x+ 1)
(
f̂(x)− f(x)

)2
+

C∑
i=1

∑
x≥i

(
f̂(x)− f(x)

)2

+

∑
x≥C

(
f̂(x)− f(x)

)2
 . (5)

h∗
3 = argmin

h

 max
0≤j≤C


{

j∑
x=0

∣∣∣f̂(x)− f(x)
∣∣∣+ ∣∣∣f̂(j)− f(j)

∣∣∣}1{j ̸=0}

+

{
C∑

i=1

∣∣∣∣∣∑x≥i

(
f̂(x)− f(x)

)∣∣∣∣∣+
∣∣∣∣∣ ∑x≥C

(
f̂(x)− f(x)

)∣∣∣∣∣
}
1{j=0}




(6)

with 1{.} is the indicator function.

4 Numerical application

The purpose of this section is to analyse numerically the impact of the smoothing parameter,
chosen by the minimisation of matrix norms, on the performances of the kernel estimator
of the transition matrix associated with the embedded Markov chain N in two situations,
namely: the variation of the sample size and the variation of the traffic intensity ρ. To do this,
we designed a simulator, under the Matlab environment, whose main steps are as follows:

• Step 1. Estimate hopt using expressions (3)–(6) for a n-sample generated from f .

• Step 2. Calculate P̂ , π̂C and L̂s for hopt obtained in Step 1.

• Step 3. Calculate h∗, πC and Ls the average of hopt, π̂C and L̂s, and their variance.

The quantities π̂C and L̂s are the estimators of the loss-probability and the queue length
respectively, which are obtained respectively by solving the system of equations πP̂ = π
(under the condition

∑C
i=0 π̂i = 1) and the expression Ls =

∑C
i=0 iπ̂i.

4.1 Effect of the sample size on the estimator’s performances

In this application, we focused on the effect of the choice of the smoothing parameter,
on the stationary characteristics estimators of our model, according to the sample
size. For this, we fix: the capacity of the system C = 10, the number of simulations
m = 1000, the sample sizes n ∈ {50, 100; 250; 500; 1000}, the service rate µ =
1, the traffic intensity (the arrival rate) ρ = λ/µ = λ = 0.75 and the distribution f ∈
{Poisson(ρ−1), Geometric (1/(1 + ρ−1)), Binomial (C, ρ−1/C)}, and the kernel K ∈
{Poisson; Negative Binomial; Triangular} noted respectively KPo , KNB and KT .
For all (x, y) ∈ N2 and h > 0, these kernels are defined as follow:
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• KPo(x+h)(y) = e−(x+h) (x+h)y

y! , with ℵx,h = N.

• KBN(x+1, x+1
2x+1+h )

(y) = (x+y)!
y!x!

(
x+h

2x+1+h

)y (
x+1

2x+1+h

)x+1

, with ℵx,h = N.

• KT(b,h,x)
(y) = (b+1)h−|y−x|h

(2b+1)(b+1)h−2
b∑

j=0
jh
1{|y−x|<b}, with

ℵx,h = {x, x± 1, . . . , x± b}, b ∈ N and 1{.} is the indicator function. For the
numerical application, we chose b = 2.

The exact characteristics of the considered model, for the above parameters, are given in
Table 1 while a sample of the simulation results is ranked in Tables 2–5.

Table 1 Exact value of Ls and πC according to the distribution f

Distribution Poisson Geometric Binomial
characteristic Ls πC Ls πC Ls πC

Value 1.1813 6.38× 10−4 2.5149 146.99× 10−4 1.0140 3.05× 10−4

Table 2 Estimation of smoothing parameters h∗: case of the Binomial distribution.

ISE ∥.∥1 ∥.∥2 ∥.∥∞
K n h∗ V ar(h∗) h∗ V ar(h∗) h∗ V ar(h∗) h∗ V ar(h∗)
KPo 100 0.3450 0.0482 0.2454 0.0477 0.4731 0.0570 1.5245 0.1484

500 0.3030 0.0112 0.1597 0.0080 0.4429 0.0126 1.4841 0.0323
1000 0.3070 0.0058 0.1636 0.0045 0.4485 0.0064 1.4924 0.0106

KNB 100 2.5008 0.4686 3.4811 0.6580 3.2666 0.3926 7.9421 0.4766
500 2.5595 0.0733 3.5231 0.1047 3.3025 0.0728 7.9830 0.0835

1000 2.5739 0.0424 3.5363 0.0645 3.3185 0.0421 8.0075 0.0458
KT 100 0.1224 0.0147 0.1211 0.0195 0.1133 0.0136 0.1093 0.0123

500 0.0247 0.0011 0.0313 0.0015 0.0233 0.0011 0.0209 0.0009
1000 0.0196 0.0006 0.0216 0.0007 0.0186 0.0005 0.0173 0.0005

Table 3 Estimation of the mean number of customer in the system: case of the Poisson distribution

ISE ∥.∥1 ∥.∥2 ∥.∥∞
K n Ls V ar MSE Ls V ar MSE Ls V ar MSE Ls V ar MSE
KPo 100 0.7887 0.0051 0.1592 0.7871 0.1258 0.2812 0.8698 0.0035 0.1006 1.7185 0.0540 0.3425

500 0.7934 0.0533 0.2038 0.7417 0.1747 0.3680 0.8845 0.0490 0.1371 1.7351 0.0511 0.3577
1000 0.7675 0.0003 0.1716 0.6823 0.0001 0.2491 0.8598 0.0003 0.1036 1.7276 0.0272 0.3256

KNB 100 0.7966 0.0002 0.1482 0.8828 0.0024 0.0915 0.9127 0.0001 0.0723 2.5172 0.0073 1.7917
500 0.7944 0.0000 0.1498 0.8779 0.0006 0.0927 0.9114 0.0000 0.0729 2.5238 0.0014 1.8036
1000 0.7942 0.0000 0.1499 0.8770 0.0002 0.0928 0.9115 0.0000 0.0728 2.5219 0.0006 1.7978

KT 100 0.9109 0.0429 0.1160 0.9007 0.0481 0.1268 0.9276 0.0424 0.1067 0.9258 0.0452 0.1104
500 1.0634 0.0222 0.0361 1.0471 0.0262 0.0443 1.0704 0.0201 0.0324 1.0713 0.0285 0.0406
1000 1.1163 0.0092 0.0135 1.1122 0.0125 0.0173 1.1219 0.0083 0.0118 1.1229 0.0110 0.0144
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Table 4 Estimation of the mean number of customer in the system: case of the Geometric
distribution

ISE ∥.∥1 ∥.∥2 ∥.∥∞
K n Ls V ar MSE Ls V ar MSE Ls V ar MSE Ls V ar MSE
KPo 100 2.5978 0.1570 0.1638 2.6105 0.1489 0.1581 2.5614 0.1391 0.1413 2.3643 0.0664 0.0891

500 2.2907 0.3730 0.4233 2.2990 0.3732 0.4198 2.2697 0.3483 0.4084 2.2340 0.1870 0.2659
1000 2.1723 0.4257 0.5431 2.1935 0.4168 0.5201 2.1702 0.3955 0.5144 2.1149 0.2720 0.4320

KNB 100 1.9208 0.0082 0.3612 1.9147 0.0068 0.3671 2.0419 0.0050 0.2288 3.0021 0.0044 0.2417
500 1.9042 0.0021 0.3751 1.8980 0.0018 0.3825 2.0301 0.0012 0.2363 3.0115 0.0011 0.2477

1000 1.9061 0.0011 0.3718 1.9006 0.0010 0.3784 2.0311 0.0007 0.2347 3.0077 0.0006 0.2434
KT 100 2.1619 0.2636 0.3882 2.1787 0.2793 0.3924 2.1887 0.2466 0.3530 2.2043 0.2060 0.3024

500 2.3696 0.0612 0.0824 2.3967 0.0651 0.0790 2.3771 0.0574 0.0764 2.3810 0.0488 0.0667
1000 2.4297 0.0416 0.0489 2.4395 0.0406 0.0463 2.4324 0.0382 0.0450 2.4309 0.0289 0.0359

Table 5 Estimation of the loss probability: case of the Poisson distribution (×10−4)

ISE ∥.∥1 ∥.∥2 ∥.∥∞
K n πC MSE πC MSE πC MSE πC MSE

KPo 100 1.4857 0.0025 6.6148 0.1435 2.3455 0.0017 42.9779 0.1992
500 3.7503 0.0649 8.7334 0.3592 4.6890 0.0637 44.2053 0.2138

1000 1.1858 0.0027 0.6199 0.0033 2.1327 0.0018 42.2591 0.1474
KNB 100 1.5796 0.0023 2.7321 0.0014 3.1424 0.0011 154.8834 2.2385

500 1.5535 0.0023 2.6066 0.0014 3.1178 0.0011 155.5688 2.2316
1000 1.5511 0.0023 2.5836 0.0014 3.1184 0.0011 155.0893 2.2140

KT 100 2.9368 0.0019 2.9682 0.0024 3.1272 0.0017 3.2056 0.0022
500 4.7239 0.0010 4.5481 0.0013 4.7968 0.0009 5.0260 0.0016

1000 5.3219 0.0005 5.3239 0.0007 5.4061 0.0004 5.4968 0.0007

From the obtained results, we notice that:

• Except for the case of use of KT where the convergence property of the optimal
smoothing parameter h∗ according to n, is satisfied, when using KP0 or KNB this
property is not satisfied and this regardless of the used selection procedure and the
distribution f .

• In the case of the Poisson and the Geometric distributions, the behaviour of the
variance of the optimal smoothing parameter, V ar(h∗), is not regular according n
when we use KP0 to construct the estimator P̂ . While, in the case of KNB and KT ,
the behaviour of V ar(h∗) is sensitive and converges to zero according to n, and this
regardless of f and the selection procedure used. Besides, the smallest V ar(h∗) is
noticed when using the KT .

• In the case of the Poisson and the Binomial distribution, the h∗ which provides us
estimators, of Lq and πC , with a smaller MSE is that defined in equation (5) when
we use the KT . Also, it is preferable to avoid the use of the kernels KP0 and KNB . If
f is a Geometric distribution, to obtain a more efficient estimators, of Lq and πC , it is
preferable to construct P̂ , by using the couple (KT , h

∗
3) if n ≥ 250 and the couple

(KP0
, h∗

3) when n < 250.
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4.2 Effect of the traffic intensity on the estimator’s performances

The purpose of this second application is to analyse numerically the effect of ρ on the quality
of the estimates h∗, πC and Ls. To do this, we set n = 200 and ρ = λ ∈ [0.1 ; 1.5] while
the rest of the parameters are identical to those of the first application. A sample of obtained
results is presented in Figure 1. From the results, we notice that:

• For a low traffic intensities (ρ < 0.6), in all the situations considered, we obtain
practically the same characteristics (bias, variance and MSE) of the estimators Ls

and πC .

• Contrary to the case of KT , where h∗ is inversely proportional to ρ, when using KP0

or KNB the parameter h∗ is proportional to ρ. We also notice that the behaviour of
V ar(h∗) according to ρ is not regular.

• In the case of the Poisson and the Binomial distributions, the h∗ which provides us
estimators of Lq and πC with a small MSE according to the used kernel are:
(KP0 , h

∗
3), (KNB , h

∗
3) and (KT , h

∗
2). But overall, whether for ρ ≥ 0.6, it is

preferable to use the couple (KT , h
∗
2) and avoid the couple (KNB , h

∗). While, in the
case f is a Geometric distribution the h∗ which provide us estimators of Lq and πC

with a small MSE according to the used kernel are: (KP0 , h
∗
3), (KNB , h

∗
3), and

(KT , h
∗
3) or (KT , h

∗
2). But overall, it is preferable to use KT and select the

smoothing parameter by formulas (5) or (6).

Figure 1 Variation of the model characteristics against the traffic intensity ρ (see online version
for colours)
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5 Concluding remarks

In this paper, we considered the choice of the smoothing parameter by procedures that
are based on the minimisation of matrix norms in the kernel estimation of a transition
matrix associated with an embedded DTMC, describing aD/G/1/C queue. Our simulation
results allow us to conclude, on the one hand, that the smoothing parameters selected by
the minimisation of matrix norms (in particular the quadratic matrix norm) provide us, in
general, more efficient estimators and, on the other hand, that the choice of the kernel is of
great importance, where it is preferable to use KT and avoid KNB in the context addressed.

In order to explain the paradoxical behaviour of h∗ according to n in certain situations,
let us recall that the global bias and the global variance of the estimator of a probability
mass function f , denoted respectively IBias and IV ar, are defined as follow:

IBias(f̂) = h B (h,K, f, f ′′)

= h

{∑
x∈N

[
f {E (Kx, h)} − f(x) +

V (K,x, h)

2h
f ′′(x)

]}
. (7)

IV ar(f̂) =
1

n
E(Kx,h) =

1

n

∑
x∈N

f(x)Pr(Kx,h = x). (8)

where Kx,h is the random variable of law Kx,h defined on ℵx,h and

V (K,x, h) =


x+ h, if K = KP0 ;
x−(x−1)h

x+1 , if K = KNB ;
(2x+1)x+(3x+1)h

x+1 , if K = KT .
(9)

From the expression (8), we note that if n → ∞, then IV ar(f̂) → 0 whatever the kernel
used (Kokonendji and Kiessé, 2011). Consequently, the behaviour of the h∗ according to
n can only be justified by the behaviour of IBias(f̂). From the expression (7), it is clear
that IBias(f̂) → 0 if only h → 0 when n tends to infinity and B(h,K, f, f ′′) is a finite
quantity. However, the expression (9), indicate that the quantity B(h,K, f, f ′′) tends to
zero only if the smoothing parameter h is sufficiently large and this fact that V (x, h)/2h is
a decreasing function according to h. At this stage, we conclude that h must be chosen so
as to have a compromise between h and B(h,K, f, f ′′) and which is not necessarily a zero
at the limit. This conclusion perfectly reflects the behaviour of our results.

Regarding the Triangular kernel, it should be noted that the estimator designed via this
kernel is free from the problem of the convergence of its local and global bias. Indeed, when
we consider the Triangular kernel the expression (??), which can be rewritten as follows:

IBias
(
f̂
)
=
∑
x∈N

f(x){ (b+ 1)h

P (b, h)
− 1

}
+

∑
y∈ℵx,h\{x}

f(y)Pr
(
KT(b,h,x)

= y
) ,(10)

tend to zero when h tends to zero (for more details see (Kokonendji et al., 2007)).
The negative impact of the f̂ bias on the performances of the kernel estimator of a

Markov chain transition matrix has already been reported by Cherfaoui et al. (2015 b) in the
case x ∈ R+. Consequently, in the light of our results and those of Cherfaoui et al. (2015
b), it is natural to consider the introduction of the bias-reduction techniques for a possible
improvement in the performances of the kernel estimator of a transition matrix.
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